Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus
نویسندگان
چکیده
منابع مشابه
Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus
Our understanding of mechanisms that regulate the differentiation of specific classes of synapses is limited. Here, we investigate the formation of synapses between hippocampal dentate gyrus (DG) neurons and their target CA3 neurons and find that DG neurons preferentially form synapses with CA3 rather than DG or CA1 neurons in culture, suggesting that specific interactions between DG and CA3 ne...
متن کاملSynapse-specific homeostatic mechanisms in the hippocampus.
Homeostatic synaptic plasticity allows neural circuits to function stably despite fluctuations to their inputs. Previous work has shown that excitatory synaptic strength increases globally when neuronal inputs are chronically silenced. A recent paper by Kim and Tsien describes a new type of synapse-specific homeostatic plasticity in which input silencing causes simultaneous strengthening and we...
متن کاملPlasticity of the Developing Glutamate Synapse in the Hippocampus
Synapses are highly plastic, i.e. they have the ability to change their signaling strength both in the shortand long-term (e.g. long-term potentiation LTP) in response to specific patterns of activity. In the developing brain synaptic plasticity promotes activity-dependent development, whereas in the mature brain synaptic plasticity forms the basis for learning and memory. Although both develop...
متن کاملThe intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus
Synaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here...
متن کاملN-cadherin prodomain cleavage regulates synapse formation in vivo.
Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2011
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2011.06.019